Shear-induced suppression of rupture in two-layer thin liquid films.
نویسندگان
چکیده
The effect of shear on the rupture of two stratified thin liquid films confined between parallel plates and subject to van der Waals forces is examined in this work. Lubrication theory is applied to derive a one-dimensional nonlinear evolution equation for the height of the liquid-liquid interface. Linear stability analysis reveals that the real part of the growth rate and the wavelength of the fastest growing interfacial disturbance are unaffected by shear. However, the growth rate has an imaginary part which is non-zero in the presence of shear, indicating the existence of traveling waves. Nonlinear simulations of interface behavior on homogeneous surfaces show that shear delays interfacial rupture, and suppression of rupture occurs beyond a critical shear rate. Propagation of traveling waves along the interface, and subsequent weakening of van-der-Waals-driven dewetting, is found to be the cause of the rupture delay. Analysis of flow on chemically heterogeneous surfaces also suggests a delay in interfacial rupture in the presence of shear. The problem studied here can serve as an idealized model for the lithographic printing process, and the results suggest that in the regime of shear rates relevant to printing, mechanisms of emulsification of one liquid into the other can be understood without incorporating shear. However, shear could be relevant in other physical systems such as nanofluidic and microfluidic flows.
منابع مشابه
Study of Photo-Conductivity in MoS2 Thin Films Grown in Low-Temperature Aqueous Solution Bath
An experimental study over the optical response of thin MoS2 films grownby chemical bath deposition (CBD) method is presented. As two important factors, theeffect of bath temperature and growth time are considered on the photocurrentgeneration in the grown samples. The results show that increasing the growth time leadsto better optical response and higher difference betw...
متن کاملAlternative pathways of dewetting for a thin liquid two-layer film.
We consider two stacked ultrathin layers of different liquids on a solid substrate. Using long-wave theory, we derive coupled evolution equations for the free liquid-liquid and liquid-gas interfaces. Depending on the long-range van der Waals forces and the ratio of the layer thicknesses, the system follows different pathways of dewetting. The instability may be driven by varicose or zigzag mode...
متن کاملViscosity Measurement in Thin Lubricant Films Using Shear Ultrasonic Reflection
When a shear ultrasonic wave is incident on a solid and liquid boundary, the proportion that is reflected depends on the liquid viscosity. This is the basis for some instruments for on-line measurement of bulk liquid viscosity. In machine elements, the lubricant is usually present in a thin layer between two rubbing solid surfaces. The thin film has a different response to an ultrasonic shear w...
متن کاملThinning and rupture of liquid films by moving slot jets.
We present systematic experiments of the rupture and dewetting of thin films of a nonvolatile polar liquid on partially wetting substrates due to a moving slot jet, which impinges at normal incidence. The relative motion was provided by a custom-built spin coater with a bidirectionally accessible axis of rotation that enabled us to measure film thickness profiles in situ as a function of substr...
متن کاملFabrication Of Cu(In,Ga)Se2 Solar Cells With In2S3 Buffer Layer By Two Stage Process
Cu(In,Ga)Se2 thin films (CIGS) on metallic substrate (titanium, molybdenum, aluminum, stainless steel) were prepared by a two-step selenization of Co-evaporated metallic precursors in Se-containing environment under N2 gas flow. Structural properties of prepared thin film were studied. To characterize the optical quality and intrinsic defect nature low-temperature photoluminescence, were perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of colloid and interface science
دوره 348 1 شماره
صفحات -
تاریخ انتشار 2010